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Abstract. We consider a system of three random walkers (a ‘cheetah’
surrounded by two ‘antelopes’) diffusing in one dimension. The cheetah and
the antelopes diffuse, but the antelopes experience in addition a deterministic
relative drift velocity, away from the cheetah, proportional to their distance from
the cheetah, such that they tend to move away from the cheetah with increasing
time. Using the backward Fokker—Planck equation we calculate, as a function
of their initial separations, the probability that the cheetah has caught neither
antelope after infinite time.
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1. Introduction

Diffusion controlled reactions of three particles in one dimension can be completely
understood by mapping the process to a single diffusing particle in a two-dimensional
wedge [1,2], where the lines of reaction—the positions where two particles meet—
correspond to the boundaries of the wedge. By this elegant method Fisher and Gelfand [1]
investigated diffusing particles termed vicious walkers which annihilate on meeting, while
Redner and Krapivsky [3,4] studied the equivalent capture reaction, where a single
diffusing prey (‘lamb’) is eliminated on meeting one of two diffusing predators (‘lions’)
which start one on either side of the prey. One of the main properties of interest in
these problems is the survival probability of all three vicious walkers or, equivalently, the
single prey. The vicious walker and predator—prey processes are equivalent, as far as the
survival probability is concerned, because the predators cannot meet each other without
first meeting the prey. We note that the concept of vicious walkers has recently been
extended to families of vicious walkers, in which members of one family only interact with
members of other families [5].

In this paper we introduce a three-particle system in one dimension consisting of two
prey (‘antelopes’), surrounding a single predator (‘cheetah’). So far this is just another
statement of the vicious walker problem with three walkers. Our model differs from the
standard model, however, as follows. Besides performing a diffusive motion all particles are
subjected to a drift which increases linearly with their position coordinate. Considering
the case where both species have the same diffusion constant, the equation of motion for
the antelopes (A;, A2) and the cheetah (C') with initial positions x4, < ¢ < 4, is taken
to be

&y = ax; +ni(t), i = A1, A, C (1)

where a is the strength of the drift. The Langevin noise 7;(t) is a Gaussian white noise
with mean zero and correlator

(mi()n; (') = 2Ddy6(t = t'). (2)

Equation (1) models the overdamped motion of three particles moving independently in an
inverted parabolic potential. The calculation of the time-dependent survival probability
for three vicious walkers in a conventional parabolic potential (i.e. with a < 0 in
equation (1)) has been presented elsewhere [6].
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Studying the problem in the relative coordinates, y; = xc—x4, and y2 = x4, —2¢, the
equations of motion have terms linearly depending on these relative coordinates. Therefore
the antelopes are always drifting away from the cheetah, with a drift rate proportional
to the distance from the predator. As a result, there is a nonzero probability that both
antelopes wander off to infinity without meeting the cheetah if they are initially separated
from the cheetah. Defining the process to be ‘alive’ if neither of the antelopes has met
the cheetah, we find a nonzero survival probability Q(yi,ys2) for y;,y2 > 0. The aim of
this paper is to calculate this survival probability, Q(y1,y2), in the limit of infinite time,
given that the antelopes started initially at relative distances y; and g, from the cheetah.

To provide context for our result we consider first a cheetah and a single antelope. In
section 3 the case of a cheetah surrounded by two antelopes is investigated by mapping
the process to a single diffusing particle in a two-dimensional wedge. Section 4 is a short
conclusion.

2. A cheetah and a single antelope

The dynamics of a cheetah (C') and an antelope (A; = A) is described by the Langevin
equation (1) with noise correlator (2). The process terminates when the cheetah and the
antelope meet, i.e. when x4 = x¢. Setting the initial positions as z4 < x¢, we introduce
a relative coordinate y; = y = x¢ — x4 which obeys the Langevin equation:

y=ay+ g(t)a (3)
where £(t) = ne — 14 is a Gaussian white noise with mean zero and correlator
(E(BEX) =4Do(t —t'). (4)

The probability Q(y) that the antelope has survived in the limit of infinite time, given
that antelope and cheetah started at a relative distance y, satisfies the corresponding
backward Fokker—Planck equation:

dQ@ d2Q
ay d;y>+2D dygw

Since the antelope is eliminated on meeting the cheetah, the survival probability has to
vanish for y = 0: Q(0) = 0. If the prey is initially infinitely far from the predator it will
certainly survive, so Q(co) = 1. Solving the backward Fokker—Planck equation (5) with
the stated boundary conditions gives

Q(y) = Exf <\/%y) , (6)

where Erf(z) is the error function. This result will occur again in the next section as a
borderline case.

— 0. (5)

3. A cheetah surrounded by two antelopes

In this section we investigate the infinite-time survival probability of two antelopes
surrounding a cheetah. To address the problem in a simple way, we interpret the
individual one-dimensional coordinates of the antelopes and the cheetah, x4,, x¢, x4,, as
the coordinates of a single diffusing particle in three dimensions, which are projected down
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to the diffusion of a single particle in a two-dimensional absorbing wedge in the space of
relative coordinates. The boundary conditions imposed by the elimination process of the
antelopes on meeting the cheetah correspond to the boundaries of the absorbing wedge.

The antelopes and the cheetah evolve according to the Langevin equation (1) with
noise correlator (2). Mapping this process onto a single diffusing particle in a two-
dimensional wedge, we use the relative coordinates y; = x¢ — x4, and yo = x4, — 2¢.
This diffusing particle now obeys the following equation of motion:

y; = ay; +§;, Jj=12, (7)

where &; is the ‘relative’ Gaussian white noise defined by & = ¢ —na, and & = 14, —1c.
The mean is zero as beforehand but the correlator now becomes
4Do(t —t') for i =j
(0)E(t) = ’
(&0 (#)) { —2D5(t —t') for i # j.

Note that exactly the same equations for the relative coordinates are obtained if the
individual coordinates obey the equations #4, = a(zc — xa,) + N4, Tc = Mo, Ta, =
a(xa, — o) + na,. In this representation, the cheetah is only diffusing (hence ‘drowsy’),
while the antelopes have both diffusive and deterministic (‘flight’) components to their
motion.

To determine the infinite-time survival probability of the equivalent single diffusing
particle in two dimensions we consider the time-independent backward Fokker—Planck
equation in the initial coordinates yy, yo:

0 0 0? 0? 0?
a (ylayl + yQayg) Q(y1,92) +2D (ay% o 0y18y2) Q(y1,92) = 0. (8)

Since an antelope is eliminated on meeting the cheetah, the survival probability of the
single random walker must vanish when y; = 0 or y» = 0, corresponding to the absorbing
boundaries of a wedge with opening angle © = 7/2, in which the single random walker is
diffusing; see figure 1. If both antelopes are infinitely far from the cheetah, the survival
probability will be unity, hence Q (o0, y2) = Q(y1,00) = 1.

In order to reduce equation (8) to a canonical form, a change of variables is required.
The variables are first rendered dimensionless by the change of variables 7; = y;1/a/2D,
1 = 1,2. Introducing the new variables u and v according to

~_u+\/§v ~_u—\/gv

hn 5 Y2 5 (9)
transforms equation (8) to
0 g o 0
- S T =0. 1
{uau tug toat 81}2] Qu,v) =0 (10)

The absorbing boundaries in the new variables v and v are at « = ++v/3v. In the new
variables, therefore, the wedge is symmetric about the u-axis and has an opening angle of
© = 7/3—=see figure 1. Because of the symmetry of the wedge, polar coordinates (r, )
are appropriate. Hence the time-independent backward Fokker—Planck equation becomes

0* 1 9 1 9,
[WJFT—Qa—SOQJF(;JrT) 5} Q(r,p) = 0. (11)
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Figure 1. The transformation to a canonical differential equation maps the right-
angled wedge in (y1,y2) coordinates to an axisymmetric wedge of opening angle
© =mn/3.

The boundary conditions reduce to Q(r,7/6) = Q(r,—7/6) = 0 and Q(r = 0,¢) =0
at the absorbing boundaries of the wedge and Q(oco,p) = 1 for —7/6 < ¢ < 7/6
corresponding to the survival of both antelopes if they are initially at infinite distance
from the cheetah.

The partial differential equation (11) can be solved by separation of variables,

Qr,p) = Z AnRn(r)®n(p), (12)

where the angular part ®,,(¢) is a cosine mode satisfying the angular boundary conditions,

O () = cos(3(2n — 1)p), (13)

and the coefficients A,, are to be determined by the radial boundary conditions.
Substituting the result for ®,(¢) in (11) yields the following ordinary differential
equation for R, (r).

rPRI(r) + (r+ %) R, (r) = 9(2n — 1)*R,(r) = 0. (14)

By setting 2 = ¢ and R, (r) = (*"%/2p, () this differential equation is transformed into

o) + (¢ +0n-2) () + P20 . (15)

This ordinary differential equation is related to the confluent hypergeometric differential
equation (see 2.273(9) in [7]). Defining ¢ = 20 and p,(¢) = exp(—0)¥, (o), equation (15)
reduces to the confluent hypergeometric differential equation, also called Kummer’s
equation |7, 8],

o (0) + (6n — 2 — o)), (0) — (3n — 3)¥u(0) = 0. (16)

The solutions of this differential equation are known. The general solution can be
written in terms of Kummer’s functions of the first kind, M(a, b, z), and of the second
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kind, U(a, b, z), also denoted confluent hypergeometric functions of the first and second

kind [8]:
$u(0) = B,M (3n — 1,60 —2,0) + C,U (3n — L,6n —2,0), (17)

where B,, and ), are constants to be determined by the boundary condition. Note that
we have introduced, for later convenience, a redundancy in the coefficients, having A,,, B,
and C),, when there are only two independent sets of coefficients. This redundancy will be
removed below by an explicit choice of the coefficients B,,.
Substituting all former transformations, the result for R, (r) is
2

1 1 9

(18)

The particular solution we are looking for has to vanish at » = 0 and approach a constant
value for r — oo to satisfy the boundary conditions. The confluent hypergeometric
function of the first kind is unity when its argument is zero, M(a,b,0) = 1, whereas the
hypergeometric function of the second kind, U(a,b, z), diverges as z — 0 for b > 1 [§]
which is the case in our solution, where b = 6n — 2, since n > 0. Hence we set C,, = 0 in
the solution so that it vanishes at r = 0.

Now we investigate the behaviour of our solution in the limit » — oo. The asymptotic
form of the hypergeometric function of the first kind for large arguments, z — 400, is [§]

(b
M(a, b, z) ~ %z“_bez. (19)
Hence the radial solution approaches a constant value for r — oc.
: 39 I'(6n—2)
lim R,(r)=2""3%2_—~—"_~"_p 2
Jimn Fu () T(3n —1/2) (20)

To simplify the fitting to the boundary condition Q(r = oo,¢) = 1 we eliminate the
aforementioned redundancy in the expansion coefficients by choosing the constants B,
such that R, (co) = 1 for all n, i.e. we choose B,, = 2%/>73"(I'(3n—1/2))/(I'(6n —2)). The
coefficients A, in equation (12) can be determined by imposing the boundary condition
Qoo,¢) = 1, 1e. Y 2 Ay cos(3(2n — 1)¢] = 1, for ¢ in the interval (—n/6,7/6). This
gives

4 (_l)nfl
w2n—1

A, = (21)

Finally, we simplify the radial solution by use of Kummer’s formula [8]:
e“M(a, b, —z) = M(b — a, b, z). (22)

Then the solution for the infinite-time survival probability of the single diffusing particle
in a wedge becomes, in the dimensionless variables (r, ¢),

o0

Q(r,p) = ;2311”/2%(271:(—3?)}(16/5)— ) (—=1)" tcos(3(2n — 1))
x 3N <3n - g 6n — 2, —%2) . (23)
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Figure 2. The infinite-time survival probability of two antelopes surrounding a
cheetah, plotted against the dimensionless relative coordinates g1 = \/a/2D(x9—

x1) and J3 = /a/2D(x3 — x2).

This sum is easily shown to converge since the summand a, decays to zero faster than
1/n for n — oo. For large n, the confluent hypergeometric function approaches the
exponential function, M (3n — 2,6n — 2, —(r?/2)) — exp(—r?/4). The asymptotic form
of the quotient of gamma functions is given by I'(3n — 1/2)/T'(6n — 2) ~ 273" (6n —
3)73n+3/2e3n=3/2 T summary, the summand decays to zero for large n as

9—6n-+9/2

6n — 3)~3n+3/2,.6n-3 3n—3/2—r2/4
s o3 e

Uy ~ , (24)
where the alternating signs and oscillating cosine functions have been omitted. Although
the sum clearly converges, the computational equipment was not sufficient to calculate
the sum in general. Therefore, all plots of the solution to be displayed in this paper are
approximations including the first 30 terms of the sum, which is sufficient in the chosen
range, since, for example, the error due to the absence of the next ten terms, up to term
40, is smaller than 5 x 10737,

To plot and analyse the infinite-time survival probability we transform the solution
back to the dimensionless relative coordinates ¢, and 7. In those coordinates the result
reads

[e.9]

U1, Y2) = —1)nlgintl/2 [(Bn—1/2) cos n — 1) arctan Nt 0
Qi) = (1B G cos [3(2n — Darc ( ﬁ<g1+g2>)]

~ ~ o~ ~ ~ ~ o~ ~ 3n—3/2
x M (3n— .60 — 2, ~2(5 + a2 + 52)) (55 + Gugiz + 5) "7

(25)

In figure 2 this function is plotted in the range 91,92 € [0,8]. The survival probability
smoothly increases from zero on the lines y; = 0 and 75 = 0 to form a plateau of almost
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o 4t

(3

Figure 3. Contour lines of the infinite-time survival probability of two antelopes
surrounding a cheetah versus the relative coordinates §; = \/a/2D(z9 — x1) and
U2 = \/a/2D(x3 — x3). The different lines correspond to constant probabilities
of 0.1 up to 0.8.

constant probability for §; > 2 and g, > 2 that increases to unity at ¢; = oo and g, = oo,
corresponding to certain survival when both antelopes start infinitely far from the cheetah.
Unfortunately Mathematica could not calculate the sum for y; — 0 and g, — 0, but the
summand of equation (25) clearly vanishes when ¢; = 0 or g5 = 0 due to the vanishing
of the cosine functions. In particular, is is easy to show that for, say, y; — 0 at fixed s,
Q (71, Y2) vanishes linearly with ¢, as is evident in figure 2.

Further analytical simplification can be made when both 7; and 7, tend to zero. In
this case the n = 1 term dominates the sum in equation (25), and the argument z of the
function M(a, b,z) can be set to zero. One then obtains, after some algebra, the simple
form

QU1,72) — \/1273?1@2@1 + 2). (26)

This function vanishes linearly with g at fixed g, but as 2 when ¢, is taken to zero with
the ratio 7»/7; held fixed. Evidence of this behaviour can be observed near the origin in
figure 2.

To study the survival probability further, it is also of interest to consider the contour
lines of figure 2 as shown in figure 3. Investigating those one easily recognizes that the
function is symmetric about the line ¢; = 75, as it must be. Furthermore, in the limit of
one relative coordinate tending to infinity, say y» = oo, the problem with two antelopes
simplifies to the problem of a single antelope with a cheetah, which has been calculated in
section 2. In the dimensionless variables, the result for the survival probability of a single
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Figure 4. The infinite-time survival probability of two antelopes surrounding a
cheetah keeping the relative coordinate g2 = ¢ fixed at (bottom to top) ¢ = 2,
¢ = 3 and ¢ = 4, where the top curve is already indistinguishable from the error
function (27).

antelope and a cheetah is

. Y1
,00) =FErf | —= | . 27
Qi) = mt () 2
Unfortunately, extracting this limiting behaviour analytically has proved to be intractable.
Instead, we plot Q(71, s = ¢) for ¢ = 2, 3,4; see figure 4. The figure clearly shows how the
sequence of curves approaches the error function expected for g, = oo; see equation (27).
The ¢ = 4 curve lies on top of the error function, demonstrating the limiting behaviour.

4. Conclusion

In this paper we introduced the interesting problem of a diffusion controlled reaction
where, in addition to the diffusive motion, the particles are subjected to a separating
drift. By mapping the process of two antelopes surrounding a cheetah to that of a single
diffusing particle in two dimensions, we derived the probability that both antelopes have
survived up to infinite time as a function of their initial separations from the cheetah.
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